
1

Fast: A Transducer-Based Language for Tree Manipulation

LORIS D’ANTONI, University of Pennsylvania
MARGUS VEANES, BENJAMIN LIVSHITS, and DAVID MOLNAR, Microsoft Research
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1. INTRODUCTION

This article introduces Functional Abstraction of Symbolic Transducers (FAST), a new
language for analyzing and modeling programs that manipulate trees over potentially
infinite domains. FAST builds on top of satisfiability modulo theory solvers, tree au-
tomata, and tree transducers. Tree automata are used in a variety of applications in
software engineering, from analysis of XML programs [Hosoya and Pierce 2003] to
language type checking [Seidl 1994b]. Tree transducers extend tree automata to model
functions over trees, and appear in fields such as natural language processing [Maletti
et al. 2009; Purtee and Schubert 2012; May and Knight 2008] and XML transforma-
tions [Maneth et al. 2005]. While these formalisms are of immense practical use, they
suffer from a major drawback: in the most common forms they can only handle finite
alphabets. Moreover, in practice existing models do not scale well even for finite but
large alphabets.

In order to overcome this limitation, Symbolic Tree Automata (STAs) and Symbolic
Tree Transducers (STTs) extend these classic objects by allowing transitions to be
labeled with formulas in a specified theory. While the concept is straightforward,

Loris D’Antoni did this work as part of an internship at Microsoft Research, and he is supported by NSF
Expeditions in Computing award CCF 1138996.
Authors’ addresses: L. D’Antoni, University of Pennsylvania 3330 Walnut St. Philadelphia, PA, 19104; email:
lorisdan@seas.upenn.edu; M. Veanes, B. Livshits, and D. Molnar, Microsoft Research, One Microsoft Way,
Redmond, WA; emails: margus@microsoft.com, livshits@microsoft.com, dmolnar@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0164-0925/2015/10-ART1 $15.00
DOI: http://dx.doi.org/10.1145/2791292

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 1, Article 1, Publication date: October 2015.

http://dx.doi.org/10.1145/2791292
http://dx.doi.org/10.1145/2791292


1:2 L. D’Antoni et al.

Fig. 1. Representative applications of FAST discussed in Section 5. For each application we show which
analyses of FAST are needed.

traditional algorithms for constructing composition, deciding equivalence, and other
properties of finite automata and transducers do not immediately generalize. A no-
table example appears in D’Antoni and Veanes [2013a] where it is shown that while
in the classic case allowing finite automata transitions to read subsequent inputs does
not add expressiveness, in the symbolic case this extension makes most problems, such
as checking equivalence, undecidable. Symbolic tree automata still enjoy the closure
and decidability properties of classic tree automata [Veanes and Bjørner 2012] under
the assumption that the alphabet theory forms a Boolean algebra (i.e., closed under
Boolean operations) and it is decidable. In particular, STAs can be minimized and
are closed under complement, and intersection, and it is therefore decidable to check
whether two STAs are equivalent.

Taking a step further, tree transducers model transformations from trees to trees. A
STT traverses the input tree in a top-down fashion, processes one node at a time, and
produces an output tree. This simple model can capture several scenarios; however, in
most useful cases it is not closed under sequential composition [Fülöp and Vogler 2014].
In the case of finite alphabets this problem is solved by augmenting the transducer’s
rules with regular look-ahead [Engelfriet 1977], which is the capability of checking
whether the subtrees of each processed node belong to some regular tree languages. We
extend STTs in a similar way, and introduce Symbolic Tree Transducers with Regular
look-ahead (STTRs). The main theoretical result of this article is a new composition
algorithm for STTRs together with a proof of its correctness. Similarly to the classic
case, we show that two STTRs A and B can be composed into a single STTR A ◦ B if
either A is single-valued (for every input produces at most one output), or B is linear
(traverses each node in the tree at most once). Remarkably, the algorithm works modulo
any decidable alphabet theory that is an effective Boolean algebra.

We introduce the language FAST as a front-end for STAs and STTRs. FAST is a func-
tional language that integrates symbolic automata and transducers with Z3 [De Moura
and Bjørner 2008], a state-of-the-art solver able to support complex theories that range
from data types to nonlinear real arithmetic. We use FAST to model several real world
scenarios and analysis problems: we demonstrate applications to HTML sanitization,
interference checking of augmented reality applications submitted to an app store,
deforestation in functional language compilation, and analysis of functional programs
over trees. We also sketch how FAST can capture simple CSS analysis tasks. All such
problems require the use of symbolic alphabets. Figure 1 summarizes our applications
and the analyses enabling each one. In Section 7 we further contrast FAST with previous
Domain-Specific Languages (DSLs) for tree manipulation.

Contributions summary:

(1) a theory of symbolic tree transducers with regular look-ahead (STTR), that nontriv-
ially extends the classic theory of tree transducers (Section 3);

(2) a new algorithm for composing STTRs together with a proof of correctness
(Section 4);
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(3) FAST, a DSL for tree manipulations founded on the theory of STTRs (Section 3); and
(4) five concrete applications of FAST showing how composition of STTR can be benefi-

cial in practical settings (Section 5).

2. MOTIVATING EXAMPLE

We use a simple scenario to illustrate the main features of the language FAST and the
analysis enabled by the use of symbolic transducers. Here, we choose to model a basic
HTML sanitizer. An HTML sanitizer is a program that traverses an input HTML doc-
ument and removes or modifies nodes, attributes, and values that can cause malicious
code to be executed on a server. Every HTML sanitizer works in a different way, but the
general structure is as follows: (1) the input HTML is parsed into a Document Object
Model (DOM) tree, (2) the DOM is modified by a sequence of sanitization functions
f1, . . . , fn, and (3) the modified DOM tree is transformed back into an HTML docu-
ment.1 In the following paragraphs we use FAST to describe some of the functions used
during step 2. Each function fi takes as input a DOM tree received from the browser’s
parser and transforms it into an updated DOM tree. As an example, the FAST program
sani (Figure 2, line 30) traverses the input DOM and outputs a copy where all subtrees
in which the root is labeled with the string "script" have been removed, and all the
characters "’" and """ have been escaped with a "\".

The following informally describes each component of Figure 2. Line 2 defines the
data type HtmlE of our trees.2 Each node of type HtmlE contains an attribute tag of type
string and is built using one of the constructors nil, val, attr, or node. Each constructor
has a number of children associated with it (2 for attr) and all such children are HtmlE
nodes. We use the type HtmlE to model DOM trees. Since DOM trees are unranked
(each node can have an arbitrary number of children), we will first encode them as
ranked trees.

We adopt a slight variation of the classic binary encoding of unranked trees (Figure 3).
We first informally describe the encoding and then show how it can be formalized in
FAST. Each HTML node n is encoded as an HtmlE element node(x1, x2, x3) with three
children x1, x2, x3 where (1) x1 encodes the list of attributes of n, (2) x2 encodes the
first child of n in the DOM, (3) x3 encodes the next sibling of n, and (4) tag contains
the node type of n (div, etc.). Each HTML attribute a with value s is encoded as an
HtmlE element attr(x1, x2) with two children x1, x2 where (1) x1 encodes the value s
(nil if s is the empty string), (2) x2 encodes the list of attributes following a (nil if a is
the last attribute), and (3) tag contains the name of a (id, etc.). Each nonempty string
w = s1 . . . sn is encoded as an HtmlE element val(x1) where tag contains the string “s1,”
and x1 encodes the suffix s2 . . . sn. Each element nil has tag " ", and can be seen as a
termination operator for lists, strings, and trees. This encoding can be expressed in
FAST (lines 4–12). For example, nodeTree (lines 4–6) is the language of correct HTML
encodings (nodes): (1) the tree node(x1, x2, x3) is in the language nodeTree if x1 is in the
language attrTree, x2 is in the language nodeTree, and x3 is in the language nodeTree;
(2) the tree nil is in nodeTree if its tag contains the empty string. The other language
definitions are similar.

We now describe the sanitization functions. The transformation remScript (lines 14–
18) takes an input tree t of type HtmlE and produces an output tree of type HtmlE:
(1) if t = node(x1, x2, x3) and its tag is different from "script", remScript outputs a
copy of t in which x2 and x3 are replaced by the results of invoking remScript on x2
and x3 respectively; (2) if t = node(x1, x2, x3) and its tag is equal to "script", remScript
outputs a copy of x3, (3) if t = nil, remScript outputs a copy t. The transformation esc

1Some sanitizers process the input HTML as a string, often causing the output not to be standards compliant.
2Section 6 discusses why classic tree transducers do not scale in this case.
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Fig. 2. Implementation and analysis of an HTML sanitizer in FAST.

Fig. 3. (Left) HtmlE encoding of the HTML tree <div id=’e"’><script>a</script></div><br />.
div, script, and br are built using the constructor node. Nodes with tag id, and text, are built using attr.
Single character nodes are built using val, and ε’s using nil. The strings appearing in the figure are the tags
of each node. Sanitizing this tree with the function sani of Figure 2 yields the HtmlE tree corresponding
to <div id=’e\"’></div><br />. (Right) HtmlE encoding of the HTML tree resulting from applying the
transformation sani to the tree on the left of the figure.
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(lines 19–24) of type HtmlE->HtmlE escapes the characters ’ and ", and it outputs
a copy of the input tree in which each node val with tag "’" or """ is prepended a
node val with tag "\". The transformations remScript and esc are then composed into a
single transformation rem_esc (line 26). This is done using transducer composition. The
square bracket syntax is used to represent the assignments to the attribute tag. One
might notice that rem esc also accepts input trees that are not in the language nodeTree
and do not correspond to correct encodings. Therefore, we compute the transformation
sani (line 27), which is the same as rem esc, but restricted to only accept inputs in the
language nodeTree.

We can now use FAST to analyze the program sani. First, we define the language
bad output (lines 29–32), which accepts all the trees containing at least one node with
tag "script".3 Next, using preimage computation, we compute the language bad inputs
(line 34) of inputs that produce a bad output. Finally, if bad inputs is the empty lan-
guage, sani never produces bad outputs. When running this program in FAST this
checking (line 35) fails, and FAST provides the following counterexample:

node ["script"] nil nil (node ["script"] nil nil nil)

where we omit the attribute for the nil nodes. This is due to a bug in line 17, where
the rule does not recursively invoke the transformation remScript on x3. After fixing
this bug the assertion becomes valid. In this example, we showed how in FAST simple
sanitization functions can be first coded independently and then composed without
worrying about efficiency. Finally, the resulting transformation can be analyzed using
transducer-based techniques.

3. SYMBOLIC TREE TRANSDUCERS AND FAST

The concrete syntax of FAST is shown in Figure 4. FAST is designed for describing trees,
tree languages, and functions from trees to trees. These are supported using STAs, and
STTRs. This section covers these objects and how they describe the semantics of FAST.

3.1. Background

All definitions are parametric with respect to a given background theory, called a label
theory, over a fixed background structure with a recursively enumerable universe of
elements. Such a theory is allowed to support arbitrary operations (such as addition,
etc.); however, all the results in the following only require it to be (1) closed under
Boolean operations and equality, and (2) decidable (quantifier free formulas with free
variables can be checked for satisfiability).

We use λ expressions for defining anonymous functions called λ terms without having
to name them explicitly. In general, we use standard first-order logic and follow the
notational conventions that are consistent with Veanes et al. [2012]. We write f (v) for
the functional application of the λ term f to the term v. We write σ for a type and the
universe of elements of type σ is denoted by σ . A σ predicate is a λ term λx.ϕ(x) where
x has type σ , and ϕ is a formula for which the free variables FV(ϕ) are contained in {x}.
Given a σ predicate ϕ, [[ϕ]] denotes the set of all a ∈ σ such that ϕ(a) holds. The set of
σ predicates is denoted by �(σ ). Given a type σ (such as int), we extend the universe
with σ -labeled finite trees as an algebraic data type T σ

� where � is a finite set of tree
constructors f with rank �( f ) ≥ 0; f has type σ × (T σ

� )�( f ) → T σ
� .4 We call T σ

� a tree

3This definition illustrates the nondeterministic semantics of FAST: a tree t belongs to bad output if at least
one of the three rules applies.
4When �( f ) = 0 then f has type σ → T σ

� .
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Fig. 4. Concrete syntax of FAST. Nonterminals and metasymbols are in italic. Constant expressions for
strings and numbers use C# syntax [Hejlsberg et al. 2003]. Additional well-formedness conditions (such as
well-typed terms) are assumed to hold.

type. Let �(k) def= { f ∈ � | �( f ) = k}. We require that �(0) is nonempty so that T σ
� is

nonempty. We write f [a](ū) for f (a, ū) and abbreviate f [a]() by f [a].

Example 3.1. The FAST program in Figure 2, declares HtmlE = T String
� over � =

{nil, val, attr, node}, where �(nil) = 0, �(val) = 1, �(attr) = 2, and �(node) = 3. For
example, attr["a"](nil["b"], nil["c"]) is in T String

� .

We write ē for a tuple (sequence) of length k ≥ 0 and denote the i’th element of ē by
ei for 1 ≤ i ≤ k. We also write (ei)k

i=1 for ē. The empty tuple is () and (ei)1
i=1 = e1. We

use the following operations over k-tuples of sets. If X̄ and Ȳ are k-tuples of sets, then
X̄ � Ȳ def= (Xi ∪ Yi)k

i=1. If X̄ is a k-tuple of sets j ∈ {1, . . . , k} and Y is a set, then (X̄ � j Y )
is the k-tuple (if i= j then Xi∪Y else Xi)k

i=1.

3.2. Alternating Symbolic Tree Automata

We introduce and develop the basic theory of alternating symbolic tree automata,
which adds a form of alternation to the basic definition originally presented in Veanes
and Bjørner [2012]. We decide to use alternating STAs instead of their nonalternat-
ing counterpart because they are succinct and arise naturally when composing tree
transducers.
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Definition 1. An Alternating Symbolic Tree Automaton (Alternating STA) A is a
tuple (Q, T σ

� , δ), where Q is a finite set of states, T σ
� is a tree type, and δ ⊆ ⋃

k≥0(Q ×
�(k) × �(σ ) × (2Q)k) is a finite set of rules (q, f, ϕ, 
̄), where q is the source state, f the
symbol, ϕ the guard, and 
̄ the look-ahead.

Next, we define the semantics of an STA A = (Q, T σ
� , δ).

Definition 2. For every state q ∈ Q the language of A at q, is the set

Lq
A

def= { f [a](t̄) ∈ T σ
� | (q, f, ϕ, 
̄)∈δ, a∈[[ϕ]],

�( f )∧
i=1

∧
p∈
i

ti∈Lp
A}.

Each look-ahead set 
i is treated as a conjunction of conditions. If 
i is empty, then
there are no restrictions on the i’th subtree ti. We extend the definition to all q ⊆ Q:

Lq
A

def=
{ ⋂

q∈q Lq
A, if q 
= ∅;

T σ
� , otherwise.

For q ∈ Q, δ(q) def= {r ∈ δ | the source state of r is q}. In FAST δ(q) is

lang q : τ {c(ȳ) where ϕ(x̄) given 
̄(ȳ) | . . .}.
The semantics of a FAST language is given by the induced STA.

Example 3.2. Consider the following FAST program:

type BT[i : Int]{L(0), N(2)}
lang p:BT {L() where (i > 0)|N(x, y) given (p x) (p y)}
lang o:BT {L() where (odd i)|N(x, y) given (o x) (o y)}
lang q:BT {N(x, y) given (p y) (o y)}.

An equivalent STA A over T Int
BT has states {o, p, q} and rules

{(p, L, λx.x > 0, ()), (p, N, λx.true, ({p}, {p})),
(o, L, λx.odd(x), ()), (o, N, λx.true, ({o}, {o})),

(q, N, λx.true, (∅, {p, o}))}.
Since the first subtree in the definition of q is unconstrained, the corresponding com-
ponent in the last rule is empty. The definition for q has no case for L, so there is no
rule.

In the following we say STA for alternating STA.5

Definition 3. A is normalized if for all (p, f, ϕ, 
̄) ∈ δ, and all i, 1 ≤ i ≤ �( f ), 
i is a
singleton set.

For example, the STA in Example 3.2 is not normalized because of the rule with source
q. Normalization is a practically useful operation of STAs that is used on several
occasions.

5When compared to the model in Comon et al. [2007], the STAs defined above are “almost” alternating,
in the sense that they can only allow disjunctions of conjunctions, rather than arbitrary positive Boolean
combinations. Concretely, the look-ahead of a rule r corresponds to a conjunction of states, while several
rules from the same source state provide a disjunction of cases.
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Normalization. Let A = (Q, T σ
� , δ) be an STA. We compute merged rules (q, f, ϕ, ρ̄)

over merged states q ∈ 2Q where ρ̄ ∈ (2Q)�( f ). For f ∈ � let δ f = ⋃
p⊆Q δ f ( p) where

δ f (∅) = {(∅, f,∅, (∅)�( f )
i=1 )},

δ f ( p∪ q) = {r ∧∧ s | r ∈ δ f ( p), s ∈ δ f (q)},
δ f ({p}) = {({p}, f, {ϕ}, ρ̄) | (p, f, ϕ, ρ̄) ∈ δ},

where merge operation ∧∧ over merged rules is defined as follows:

( p, f,ϕ, p̄) ∧∧ (q, f,ψ, q̄) def= ( p∪ q, f,ϕ ∪ ψ, p̄� q̄).

Definition 4. The normalized form of A is the STA

N (A) def= (2Q, T σ
� , {( p, f,

∧
ϕ, ({qi})�( f )

i=1) | f ∈ �, ( p, f,ϕ, q̄) ∈ δ f }).
The original rules of the normalized form are precisely the ones for which the states
are singleton sets in 2Q.6 As expected, normalization preserves the language semantics
of STAs.

THEOREM 3.3. For all q ⊆ Q, Lq
A = Lq

N (A).

PROOF. The case when q = ∅ is clear because the state ∅ in N (A) has the same
semantics as L∅

A. Assume q 
= ∅. We show (1) for all t ∈ T σ
�:

t ∈ Lq
A ⇔ t ∈ Lq

N (A). (1)

The proof is by induction over the height of t. As the base case assume t = f [a] where
�( f ) = 0. Then

f [a] ∈ Lq
A ⇔ ∀q ∈ q( f [a] ∈ Lq

A)
⇔ ∀q ∈ q(∃ϕ((q, f, ϕ, ()) ∈ δ, a ∈ [[ϕ]]))
⇔ ∀q ∈ q(∃ϕ(({q}, f, {ϕ}, ()) ∈ δ f ({q}), a ∈ [[ϕ]]))

def of ∧∧⇔ ∃ϕ((q, f,ϕ, ()) ∈ δ f (q), a ∈ [[
∧

ϕ]])
⇔ f [a] ∈ Lq

N (A).

We prove the induction case next. For ease of presentation assume f is binary and
q = {q1, q2}. As the induction case consider t = f [a](t1, t2).

t ∈ Lq
A ⇔

2∧
i=1

t ∈ Lqi
A

⇔
2∧

i=1

∃ϕi, pi
1, pi

2 : (qi, f, ϕi, ( pi
1, pi

2)) ∈ δA, a ∈ [[ϕi]], t1 ∈ Lpi
1

A , t2 ∈ Lpi
2

A

⇔
2∧

i=1

∃ϕi, pi
1, pi

2 : ({qi}, f, {ϕi}, ( pi
1, pi

2)) ∈ δ f , a ∈ [[ϕi]], t1 ∈ Lpi
1

A , t2 ∈ Lpi
2

A

6In practice, merged rules are computed lazily starting from the initial state. Merged rules with unsatisfiable
guards ϕ are eliminated eagerly. New concrete states are created for all the reachable merged states. Finally,
the normalized STA is cleaned by eliminating states that accept no trees, for example, by using elimination
of useless symbols from a context-free grammar [Hopcroft and Ullman 1979, pp. 88–89].
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def of ∧∧⇔ ∃ϕ1, p1
1, p1

2, ϕ
2, p2

1, p2
2 : t1 ∈ Lp1

1
A ∩ Lp2

1
A , t2 ∈ Lp1

2
A ∩ Lp2

2
A ,

(q, f, {ϕ1, ϕ2}, ( p1
1 ∪ p2

1, p1
2 ∪ p2

2)) ∈ δ f , a ∈ [[ϕ1 ∧ ϕ2]],

⇔ ∃ϕ, p1, p2 : t1 ∈ Lp1
A , t2 ∈ Lp2

A , (q, f, ϕ, ({ p1}, { p2})) ∈ δN (A), a ∈ [[ϕ]]
IH⇔ ∃ϕ, p1, p2 : t1 ∈ Lp1

N (A), t2 ∈ Lp2
N (A), (q, f, ϕ, ({ p1}, { p2})) ∈ δN (A), a ∈ [[ϕ]]

⇔ t ∈ Lq
N (A)

The theorem follows by the induction principle.

Checking whether Lq
A 
= ∅ can be done by first normalizing A, then removing unsat-

isfiable guards using the decision procedure of the theory �(σ ), and finally using that
emptiness for classic tree automata is decidable.

PROPOSITION 3.4. The nonemptiness problem of STAs is decidable if the label theory
is decidable.

While normalization is always possible, an STA may be exponentially more succinct
than the equivalent normalized STA. This is true already for the classic case, that is,
when σ = {()}.

PROPOSITION 3.5. The nonemptiness problem of alternating STAs without attributes
is EXPTIME-complete.

PROOF. For inclusion in EXPTIME, consider an STA A = (Q, T�, δ) and q ∈ Q. Here
σ = {()}, that is, there are no attributes. Construct an alternating tree automaton
A = (Q, �, {q},) over � with state set Q, initial state q, and mapping  such that for
(q, f ) ∈ Q× �,

(q, f ) def=
∨

(q, f,ϕ,
̄)∈δ(q)

�( f )∧
i=1

∧
p∈
i

(p, i).

Then L(A) is nonempty if and only if Lq
A is nonempty. For inclusion in EXPTIME

use Comon et al. [2007, Theorem 7.5.1].
For EXPTIME-hardness a converse reduction is not as simple because alternating

tree automata allow general (positive) Boolean combinations of Q × � in the mapping
. Instead, let Ai = (Qi, T�, δi) be classic top-down tree automata with initial states
qi ∈ Qi for 1 ≤ i ≤ n [Comon et al. 2007]. Consider all these automata as STAs
without attributes and with pairwise disjoint Qi. In particular, all Ai are normalized.
Expand � to �′ = � ∪ { f } where f is a fresh symbol of rank 1. Let A be the STA
({q} ∪ ⋃

i Qi, T�′ ,
⋃

i δi ∪ {(q, f, λx.true, ({qi}1≤i≤n))}) where q is a new state. It follows
from the definitions that Lq

A 
= ∅ if and only if
⋂

i Lqi
Ai


= ∅. EXPTIME-hardness follows
now from the intersection nonemptiness problem of tree automata [Frühwirth et al.
1991] (already restricted to the top-down-deterministic case [Seidl 1994b]).

3.3. Symbolic Tree Transducers with Regular Look-Ahead

STTs augment STAs with outputs. STTs with regular look-ahead further augment
STTs by allowing rules to be guarded by STAs. Intuitively, a rule is applied to a node if
and only if its children are accepted by some STAs. We first define terms that are used
in the following as output components of transformation rules. We assume that we have
a given tree type T σ

� for both the input trees as well as the output trees. In the case that
the input tree type and the output tree type are intended to be different, we assume
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Fig. 5. A depiction of a linear rule of rank 3.

that T σ
� is a combined tree type that covers both. The guards and the look-aheads can

be used to restrict the types as needed.
The set of extended tree terms is the set of tree terms of type T σ

�∪{State} where State /∈ �

is a new fixed symbol of rank 1. A term State[q](t) is always used with a concrete value
q and State[q] is also written as q̃. The idea is that, in q̃ the value q is always viewed
as a state.

Definition 5. Given a tree type T σ
� , a finite set Q of states, and k ≥ 0, the set

�(T σ
� , Q, k) is defined as the least set S of λ terms called k-rank tree transformers that

satisfies the following conditions, let ȳ be a k tuple of variables of type T σ
�∪{State} and let

x be a variable of type σ ,

—for all q ∈ Q, and all i, 1 ≤ i ≤ k, λ(x, ȳ) · q̃(yi) ∈ S;
—for all f ∈ �, all e : σ → σ and, all t1, . . . , t�( f ) ∈ S, λ(x, ȳ) · f [e(x)](t1(x, ȳ), . . . ,

t�( f )(x, ȳ)) ∈ S.

Definition 6. A STTR T is a tuple (Q, q0, T σ
� ,), where Q is a finite set of states, q0 ∈

Q is the initial state, T σ
� is the tree type,  ⊆ ⋃

k≥0(Q×�(k)×�(σ )× (2Q)k ×�(T σ
� , Q, k))

is a finite set of rules (q, f, ϕ, 
̄, t), where t is the output.7 A rule is linear if its output
is λ(x, ȳ) · u where each yi occurs at most once in u. T is linear when all rules of T are
linear.

A rule (q, f, ϕ, 
̄, t) is also denoted by q
f,ϕ,
̄−−→ t. The open view of a rule q

f,ϕ,
̄−−→ t is

q̃( f [x](ȳ))
ϕ(x),
̄−−−→ t(x, ȳ). The open view is technically more convenient and more intuitive

for term rewriting. The look-ahead, when omitted, is ∅̄ by default. Figure 5 illustrates
an open view of a linear rule over the tree type T Int

�1
over �1 = { f, g, h}, where �( f ) = 2,

�(g) = 3, and �(h) = 0.
Let T be an STTR (Q, q0, T σ

� ,). The following construction is used to extract an
STA from T that accepts all the input trees for which T is defined. Let t be a k-rank
tree transformer. For 1 ≤ i ≤ k let St(i, t) denote the set of all states q such that q̃(yi)
occurs in t.

Definition 7. The domain automaton of T , d(T ), is the STA (Q, T σ
� , {(q, f, ϕ, (
i ∪

St(i, t))�( f )
i=1) | q

f,ϕ,
̄−−→ t ∈ }).

The rules of the domain automaton also take into account the states that occur in the
outputs in addition to the look-ahead states. For example, the rule in Figure 5 yields
the domain automaton rule (q, g, λx.x < 4, ({p}, {q}, {p})).

7For k = 0 we assume that (2Q)k = {()}, that is, a rule for c ∈ �(0) has the form (q, c, ϕ, (), λx.t(x)) where t(x)
is a tree term.
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We recall that given a lambda term u = λ(x, ȳ) · v, the term u(a, s̄) is the function
application of u to (a, s̄), where a and s̄ substitute x and ȳ, respectively. In the following
let T be the STTR, and for 
 ⊆ Q, let L


T
def= L


d(T ).

Definition 8. For all q ∈ QT , the transduction of T at q is the function Tq
T from T σ

�

to 2T σ
� such that, for all t = f [a](s̄) ∈ T σ

� ,

Tq
T (t) def= ⇓T (̃q(t)),

⇓T (̃q(t))def=⋃{⇓T (u(a, s̄)) | (q, f, ϕ, 
̄, u)∈T , a∈[[ϕ]],
�( f )∧
i=1

si∈L
i
T },

⇓T (t) def= { f [a](v̄) |
�( f )∧
i=1

vi ∈ ⇓T (si)}.

The transduction of T is TT
def= Tq0

T . The definitions are lifted to sets using union.

We omit T from Tq
T and ⇓T when T is clear from the context.

Example 3.6. Recall the transformation remScript in Figure 2. These are the corre-
sponding rules. We use q for the state of remScript, and ı for a state that outputs the
identity transformation. The “safe” case is

q̃(node[x](y1, y2, y3))
x 
="script"−−−−−−→ node[x](̃ ı(y1), q̃(y2), q̃(y3)),

the “unsafe” case is q̃(node[x](y1, y2, y3))
x="script"−−−−−−→ ı̃(y3), and the “harmless” case is

q̃(nil[x]())
true−−→ nil[x]().

In FAST, a transformation Tq is defined by the statement

trans q :τ -> τ { f (ȳ) where ϕ(x) given 
(ȳ) to t(x, ȳ)︸ ︷︷ ︸
a rule with source state q and input f [x](ȳ)

| . . .},

where 
(ȳ) denotes the look-ahead ({r | (r yi) ∈ 
(ȳ)})�( f )
i=1 . The semantics of a FAST

transformation is given by the induced STTR.

Example 3.7. The following STTR describes the function h that negates a node
value when the value in its left child is odd, leaves it unchanged otherwise, and is then
invoked recursively on the children.

type BT[x : Int]{L(0), N(2)}
lang oddRoot:BT {

N(t1, t2) where (odd x)
| L() where (odd x)

}
def evenRoot:BT:= (complement oddRoot)
trans h:BT->BT {

N(t1, t2) given (oddRoot t1) to (N[−x](h t1)(h t2))
| N(t1, t2) given (evenRoot t1) to (N[x](h t1)(h t2))
| L() to (L[x])

}
The following property of STTRs will be used in Section 4.
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1:12 L. D’Antoni et al.

Definition 9. T is single valued if ∀(t ∈ T σ
� , q ∈ QT ) : |Tq

T (t)| ≤ 1.

Determinism, as defined next, implies single-valuedness and determinism is easy to
decide. Intuitively, determinism means that there are no two distinct transformation
rules that are enabled for the same node of any input tree. Although single-valuedness
can be decided in the classic case [Esik 1980], decidability of single-valuedness of
STTRs is an open problem.

Definition 10. T is deterministic when, for all q ∈ Q, f ∈ �, and all rules q
f,ϕ,
̄−−→ t

and q
f,ψ,r̄−−−→ u in T , if [[ϕ]] ∩ [[ψ]] 
= ∅ and, for all i ∈ {1, . . . , �( f )}, L
i ∩ Lri 
= ∅, then

t = u.

3.4. The Role of Regular Look-Ahead

In this section, we briefly describe what motivated our choice of considering STTRs in
place of STTs. The main drawback of STTs is that they are not closed under composition,
even for very restricted classes. As shown in the next example, when STTs are allowed
to delete subtrees, the domain is not preserved by the composition.

Example 3.8. Consider the following FAST program:

type BBT[b : Bool]{L(0), N(2)}
trans s1:BBT ->BBT{

L() where b to (L[b])
| N(x, y) where b to (N[b] (s1 x) (s1 y))

}
trans s2:BBT->BBT {

L() to (L[true])
| N(x, y) to (L[true])

}.
Given an input t, s1 outputs the same tree t if and only if all the nodes in t have
attribute true. Given an input t, s2 always outputs L[true]. Both transductions are
definable using STTs since they do not use look-ahead. Now consider the composed
transduction s = s1 ◦ s2 that outputs L[true] if and only if all the nodes in t have
attribute true. This function cannot be computed by an STT: when reading a node
N[b](x, y), if the STT does not produce any output, it can only continue reading one of
the two subtrees. This means that the STT cannot check whether the other subtree
contains any node with attribute false. However, s can be computed using an STTR
that checks that both x and y contain only nodes with attribute true.

Example 3.7 shows that STTRs are sometimes more convenient to use than STTs.
Although the transformation h can be expressed using a nondeterministic STT that
guesses if the attribute of the left child is odd or even, using a deterministic STTR is a
more natural solution.

3.5. Operations on Automata and Transducers

FAST allows one to define new languages and new transformations in terms of previously
defined ones. FAST also supports an assertion language for checking simple program
properties such as assert-true (is-empty a).

—Operations that compute new languages:
intersect A1 A2, complement A, etc. Operations over STAs [Veanes and Bjørner 2015];
domain T . Computes the domain of the STTR T using the operation from Defini-

tion 7;
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pre-image T A. Computes an STA accepting all the inputs for which T produces an
output belonging to A.

—Operations that compute new transformations:
restrict T A. Constructs a new STTR that behaves like T , but is only defined on the

inputs that belong to A.
restrict-out T A. Constructs a new STTR that behaves like T , but is only defined

on the inputs for which T produces an output that belongs to A.
compose T1 T2. Constructs a new STTR that computes the functional composition

T1 ◦ T2 of T1 and T2 (algorithm described in Section 4).
—Assertions:

a ∈ A, A1 = A2, is-empty A. Decision procedures for STAs. In the order, membership,
language equivalence, and emptiness (Proposition 3.4 and Veanes and Bjørner
[2015]).

type-check A1 T A2. True if and only if for every input in A1, T only produces
outputs in A2.

Finally, we show how the transducer operations we described are special applications
of STTR composition.

PROPOSITION 3.9. The following operations can be expressed as

restrict T A = compose IA T ,
restrict-out T A = compose T IA,

pre-image T A = domain (restrict-out T A),
type-check A1 T A2 = is-empty (intersect A1 (pre-image T (complement A2))),

where I is the identity STTR and IA is the identity STTR that is defined only on the set
of trees accepted by A.

4. COMPOSITION OF STTRS

Closure under composition is a fundamental property for transducers. Composition is
needed as a building block for many operations, such as preimage computation and
output restriction. Unfortunately, as shown in Example 3.8 and in Fülöp and Vogler
[2014], STTs are not closed under composition. Particularly, when tree rules may delete
and/or duplicate input subtrees, the composition of two STT transductions might not be
expressible as an STT transduction. This is already known for classic tree transducers
and can be avoided either by considering restricted fragments, or by instead adding
regular look-ahead [Engelfriet 1975; Baker 1979; Engelfriet 1980]. In this article, we
consider the latter option. Intuitively, regular look-ahead acts as an additional child
guard that is carried over in the composition so that even when a subtree is deleted, the
child guard remains in the composed transducer and is not “forgotten.” While deletion
can be handled by STTRs, duplication is a much more difficult feature to support. When
duplication is combined with nondeterminism, as shown in the next example, it is still
not possible to compose STTRs. In practice this case is unusual, and it can only appear
when programs produce more than one output for a given input.

Example 4.1. Let f be the function that, given a tree of type BT (see Example 3.2)
transforms it by nondeterministically replacing some leaves with the value 5.

trans f:BT->BT {
L() to (L [i])

| L() to (L [5])
| N (x, y) to (N [i] (f x) (f y))

}
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Let g be the function that given any tree t always outputs N[0](t, t).

trans g:BT->BT {
L() to (N [0] (L [i]) (L [i]))

| N(x, y) to (N [0] (N [i] x y) (N [i] x y))
}

The composed function g( f (L[1])) produces the trees N[0](L[1], L[1]) and N[0](L[5],
L[5]), where the two leaves contain the same value since they are “synchronized” on
the same run. The function f ◦ g cannot be expressed by an STTR.

4.1. Composition Algorithm

Algorithms for composing transducers with regular look-ahead have been studied ex-
tensively [Fülöp and Vágvölgyi 1989]. However, as shown in Fülöp and Vogler [2014],
extending classic transducers results to the symbolic setting is a far from trivial task.
The key property that makes symbolic transducers semantically different and much
more challenging than classic tree transducers, apart from the complexity of the label
theory itself, is the output computation. In symbolic transducers the output attributes
depend symbolically on the input attribute. Effectively, this breaks the application of
some well-established classic techniques that no longer carry over to the symbolic set-
ting. For example, while for classic tree transducers the output language is always
regular, this is not the case for symbolic transducers. Such anomaly is caused by the
fact that the input attribute can appear more than once in the output of a rule.

Let S and T be two STTRs with disjoint sets of states QS and QT , respectively. We
want to construct a composed STTR S◦T such that, TS◦T = TS◦TT . The composition
TS◦TT is defined as (TS◦TT )(x) = ⋃

y∈TS(x) TT (y), following the convention in Fülöp
and Vogler [1998].

For p ∈ QS and q ∈ QT , assume that ‘·’ is an injective pairing function that constructs
a new pair state p · q /∈ QS ∪ QT . In a nutshell, we use a least fixed point construction
starting with the initial state q0

S · q0
T . Given a reached (unexplored) pair state p · q and

symbol f ∈ �, the rules from p · q and f are constructed by considering all possible
constrained rewrite reductions of the form

(true, (∅)�( f )
i=1 , q̃( p̃( f [x](ȳ)))) −→

S
( , , q̃( ))

∗−→
T

(ϕ, 
̄, t),

where t is irreducible. There are finitely many such reductions. Each such reduction is

done modulo attribute and look-ahead constraints and returns a rule p · q
f,ϕ,
̄−−→ t.

Example 4.2. Suppose p̃( f [x](y1, y2))
x>0−−→

S
p̃(y2). Assume also that q ∈ QT and that

p · q has been reached. Then

(true, ∅̄, q̃( p̃( f [x](y1, y2)))) −→
S

(x>0,∅, q̃( p̃(y2))),

where q̃( p̃(y2)) is irreducible. The resulting rule (in open form) is p̃ · q( f [x](y1, y2))
x>0−−→

p̃ · q(y2).

The rewriting steps are done modulo attribute constraints. To this end, a k configu-
ration is a triple (γ, L, u) where γ is a formula with FV(γ ) ⊆ {x}, L is a k-tuple of sets of
pair states p · q where p ∈ QS and q ∈ QT , and u is an extended tree term. We use con-
figurations to describe reductions of T . Formally, given two STTRs S = (QS, q0

S, T σ
� ,S)
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and T = (QT , q0
T , T σ

� ,T ), the composition of S and T is defined as follows:

S◦T def= (QS ∪ {p · q | p ∈ QS, q ∈ QT }, q0
S.q0

T , T σ
� ,

S ∪
⋃

p∈QS,q∈QT , f ∈�

Compose(p, q, f )).

For p ∈ QS, q ∈ QT , and f ∈ �, the procedure for creating all composed rules from p · q
and symbol f is as follows.

Compose(p, q, f ) def=
(1) choose (p, f, ϕ, 
̄, u) from S

(2) choose (ψ, P̄, t) from Reduce(ϕ, (∅)�( f )
i=1 , q̃(u))

(3) return(p.q, f, ψ, 
̄ � P̄, t)

The procedure Reduce uses a procedure Look(ϕ, L, q, t) that, given an attribute
formula ϕ with FV(ϕ) ⊆ {x}, a composed look-ahead L of rank k, a state q ∈ QT ,
and an extended tree term t including states from QS, returns all possible extended
contexts and look-aheads (i.e., those containing pair states). Assume, without loss of
generality, that d(T ) is normalized. We define a function sin, such that sin({e}) def= e for
any singleton set {e}, and undefined otherwise. This function extracts the only element
in a singleton set. Notice that since we operate over normalized transducers, sin is
always defined.

Look(ϕ, L, q, t) def=
(1) if t = p̃(yi) where p ∈ QS then return (ϕ, L �i {p.q})
(2) if t = g[u0](ū) where g ∈ � then

(a) choose (q, g, ψ, 
̄) from δd(T ) where IsSat(ϕ ∧ ψ(u0))
(b) L0 := L, ϕ0 := ϕ ∧ ψ(u0)
(c) for (i = 1; i ≤ �(g); i++)

choose (ϕi, Li) from Look(ϕi−1, Li−1, sin(
i), ui)
(d) return (ϕ�(g), L�(g))

The function Look(ϕ, L, q, t) returns a finite (possibly empty) set of pairs because
there are only finitely many choices in 2(a), and in 2(c) the term ui is strictly smaller
than t. Moreover, the satisfiability check in 2(a) ensures that ϕ�(g) is satisfiable. The
combined conditions allow cross-level dependencies between attributes, which are not
expressible by classic tree transducers.

Example 4.3. Consider the instance Look(x>0, ∅̄, q, t) for t = g[x+1](g[x−2]( p̃1(y2)))
where g ∈ �(1). Suppose there is a rule (q, g, λx · odd(x), {q}) ∈ δd(T ) that requires that
all attributes of g are odd and assume that there is no other rule for g from q. The term
t itself may arise as an output of a rule p̃( f [x](y1, y2)) → g[x+1](g[x−2]( p̃1(y2))) of S.
Clearly, this outrules t as a valid input of T at q because of the cross-level dependency
between attributes due to x, implying that both attributes cannot be odd at the same
time. Let us examine how this is handled by the Look procedure.

In Look(x>0, ∅̄, q, t) line 2(c) we have the recursive call Look(x>0 ∧
odd(x+1), ∅̄, q, g[x−2]( p̃1(y2))). Inside the recursive call we have the failing satisfia-
bility check of IsSat(x>0 ∧ odd(x+1) ∧ odd(x−2)) in line 2(a). So that there exists
no choice for which 2(d) is reached in the original call so the set of return values of
Look(x>0, ∅̄, q, t) is empty.

In the following we pretend, without loss of generality, that for each rule τ =
(q, f, ϕ, 
̄, t) there is a state qτ that uniquely identifies the rule (qτ , f, ϕ, 
̄, t); qτ is
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used to refer to the guard and the look-ahead of τ chosen in line 2(a) in the call to Look
in 2(b) next, qτ is not used elsewhere.

Reduce(γ, L, v) def=
(1) if v = q̃( p̃(yi)) where q ∈ QT and p ∈ QS then

return (γ, L, p̃.q(yi))
(2) if v = q̃(g[u0](ū)) where q ∈ QT and g ∈ � then

(a) choose τ = (q, g, , , t) from T
(b) choose (γ1, L1) from Look(γ, L, qτ , g[u0](ū))
(c) choose χ from Reduce(γ1, L1, t(u0, ū)) return χ

(3) if v = g[t0](t̄) where g ∈ � then
(a) γ0 := γ , L0 := L
(b) for (i = 1; i ≤ �(g); i++)

choose (γi, Li, ui) from Reduce(γi−1, Li−1, ti)
(c) return (γ�(g), L�(g), g[t0](ū))

There is a close relationship between Reduce and Definition 8. We include the case

Tq
T ( p̃(t)) def= Tq

T (Tp
S(t)) for p ∈ QS and t ∈ T σ

� , (2)

that allows states of S to occur in the input trees to Tq
T in a nonnested manner.

Intuitively this means that rewrite steps of T are carried out first while rewrite steps
of S are being postponed (called by name). In order to justify the extension (2) we need
the following Lemma.

LEMMA 4.4. For all t ∈ �(T σ
� , QS, k), a ∈ σ , and ui ∈ T σ

� :

(1) Tq
T (⇓S(t(a, ū))) ⊆ Tq

T (t(a, ū)), and
(2) Tq

T (⇓S(t(a, ū))) = Tq
T (t(a, ū)) when S is single-valued or T is linear.

PROOF. We prove statements 1 and 2 by induction over t. The base case is t =
λ(x, ȳ) × p̃(yi) for some p ∈ QS and some i, 1 ≤ i ≤ k. We have

Tq
t (⇓S( p̃(ui))) = Tq

t (Tp
S(ui)) = Tq

t ( p̃(ui)),

where the last equality holds by using Equation (2). The induction case is as follows.
Let t = λ(x, ȳ) · f [t0(x)](ti(x, ȳ)�( f )

i=1). Suppose �( f ) = 1, the proof of the general case is
analogous.

Tq
t (⇓S( f [t0(a)](t1(a, ū))))
Def ⇓S= Tq

t { f [t0(a)](v) | v ∈ ⇓S(t1(a, ū))}
Def Tq

t= {w(t0(a), (wi)m
i=1) | (∃ ϕ, 
̄, q̄) t0(a) ∈ [[ϕ]]

q
f,ϕ,
̄−−→ λ(x, y) · w(x, (̃qi(y))m

i=1) ∈ T

(∃ v) v ∈ ⇓S(t1(a, ū)),
m∧

i=1

wi ∈ Tqi
T (v)}

(�)⊆ {w(t0(a), (wi)m
i=1)) | (∃ ϕ, 
̄, q̄) t0(a) ∈ [[ϕ]]

q
f,ϕ,
̄−−→ λ(x, y) · w(x, (̃qi(y))m

i=1) ∈ T

m∧
i=1

wi ∈ Tqi
T (⇓S(t1(a, ū)))}
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IH⊆ {w(t0(a), (wi)m
i=1)) | (∃ ϕ, 
̄, q̄) t0(a) ∈ [[ϕ]]

q
f,ϕ,
̄−−→ λ(x, y) · w(x, (̃qi(y))m

i=1) ∈ T

m∧
i=1

wi ∈ Tqi
T (t1(a, ū))}

Def Tq
t= Tq

t ( f [t0(a)](t1(a, ū)))

The step (�) becomes “ ” when either |⇓S(t1(a, ū))| ≤ 1 or when m ≤ 1. The first case
holds if S is single-valued. The second case holds if T is linear in which case also
the induction step becomes “=.” Both statements of the lemma follow by using the
induction principle.

Example 4.5. The example shows a case when

Tq
T (⇓S(t(a, ū))) 
= Tq

T (t(a, ū)).

Suppose p
c,�−→
S

�, p
c,�−→
S

�, and q
g,�−−→
T

λxy · f [x](̃q(y), q̃(y)). Let f = f [0], c = c[0],

g = g[0]. Then

q̃(g( p̃(c))) −→
T

f(̃q( p̃(c)), q̃( p̃(c)))
∗−→
S

{f(̃q(�), q̃(�)), f(̃q(�), q̃(�))}∪
{f(̃q(�), q̃(�)), f(̃q(�), q̃(�))}

but
q̃(g( p̃(c))) −→

S
{̃q(g(�)), q̃(g(�))}

∗−→
T

{f(̃q(�), q̃(�)), f(̃q(�), q̃(�))}
where, for example, f(̃q(�), q̃(�)) is not possible.

The assumptions on S and T given in Lemma 4.4 are the same as in the classic
setting; however, the proof of Lemma 4.4 does not directly follow from classic results
because the concrete alphabet � × σ can be infinite. Theorem 4.6 generalizes to sym-
bolic alphabets the composition result proven in Theorem 2.11 of Engelfriet [1977].
Theorem 4.6 uses Lemma 4.4. It implies that, in general, TS◦T is an overapproxima-
tion of TS ◦ TT and that TS◦T captures TS ◦ TT precisely when either S behaves as a
partial function or when T does not duplicate its tree arguments.

THEOREM 4.6. For all p ∈ QS, q ∈ QT and t ∈ T σ
� , Tp.q

S◦T (t) ⊇ Tq
t (Tp

S(t)), and if S is
single-valued or if T is linear, then Tp.q

S◦T (t) ⊆ Tq
t (Tp

S(t)).

PROOF. We start by introducing auxiliary definitions and by proving additional
properties that help us to formalize our arguments precisely. For p ∈ QS and q ∈ QT ,
given that Lp·q is the language accepted at the pair state p · q, we have the following
relationship that is used next:

Lp·q def= {t | Tq
t (Tp

S(t)) 
= ∅}
= {t | ∃u(u ∈ Tp

S(t) ∧ Tq
t (u) 
= ∅)}

= {t | ∃u(u ∈ Tp
S(t) ∧ u ∈ Lq

T )}
= {t | Tp

S(t) ∩ Lq
T 
= ∅}.
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The symbolic (or procedural) semantics of Look(ϕ, P̄, q, t) is the set of all pairs returned
in line 1 and line 2(d) after some nondeterministic choices made in line 2(a) and the
elements of recursive calls made in line 2(c). For a set P of pair states, and for a k-tuple
P̄,

LP def=
⋂

p.q∈P

Lp·q,

LP̄ def= {ū |
k∧

i=1

ui ∈ LPi }.

The concrete semantics of Look(ϕ, P̄, q, t) is defined as follows. We assume that t im-
plicitly stands for λ(x, ȳ) · t(x, ȳ) and ϕ stands for λx · ϕ(x).

[[Look(ϕ, P̄, q, t)]] def=
{(a, ū)|a ∈ [[ϕ]], ū ∈ LP̄,⇓S(t(a, ū)) ∩ Lq

T 
= ∅}. (3)

The concrete semantics of a single pair (ϕ, P̄) is

[[(ϕ, P̄)]] def= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄}.
We now prove (4). It is the link between the symbolic and the concrete semantics of
Look and Definition 2.⋃{[[χ ]]|Look(ϕ, P̄, q, t) returns χ}=[[Look(ϕ, P̄, q, t)]]. (4)

We prove (4) by induction over t. The base case is when t = p̃(yi) for some p ∈ QS and
yi for some i ∈ {1, . . . , k}:⋃{[[χ ]]|Look(ϕ, P̄, q, p̃(yi)) returns χ}

= [[(ϕ, P̄ �i p.q)]]

= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄, ui ∈ Lp·q}
= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄, Tp

S(ui) ∩ Lq
T 
= ∅}

= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄,⇓S( p̃(ui)) ∩ Lq
T 
= ∅}

= [[Look(ϕ, P̄, q, p̃(ui))]].

The induction case is when t = f [t0](t̄). Assume �( f ) = 2. IH is that (4) holds for t1 and
t2. Assume, without loss of generality, that d(T ) is normalized. We have for all a ∈ σ
and ū ∈ (T σ

� )k,

(a, ū) ∈
⋃

{[[χ ]] | Look(ϕ, P̄, q, f [t0](t̄)) returns χ}

(Def Look)⇔ (exists ψ, q1, q2) (q, f, ψ, ({q1}, {q2})) ∈ δd(T ),

IsSat(ϕ ∧ ψ(t0)),
(exists ϕ′, P̄ ′, ϕ′′, P̄ ′′)
Look(ϕ ∧ ψ(t0), P̄, q1, t1) returns (ϕ′, P̄ ′),
Look(ϕ′, P̄ ′, q2, t2) returns (ϕ′′, P̄ ′′),
(a, ū) ∈ [[(ϕ′′, P̄ ′′)]]
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(IH)⇔ (exists ψ, q1, q2) (q, f, ψ, ({q1}, {q2})) ∈ δd(T ),

IsSat(ϕ ∧ ψ(t0)),
(exists ϕ′, P̄ ′)
Look(ϕ ∧ ψ(t0), P̄, q1, t1) returns (ϕ′, P̄ ′),
(a, ū) ∈ [[Look(ϕ′, P̄ ′, q2, t2)]]

(Eq (3))⇔ (exists ψ, q1, q2) (q, f, ψ, ({q1}, {q2})) ∈ δd(T ),

IsSat(ϕ ∧ ψ(t0)),
(exists ϕ′, P̄ ′)
Look(ϕ ∧ ψ(t0), P̄, q1, t1) returns (ϕ′, P̄ ′),

a ∈ [[ϕ′]], ū ∈ LP̄ ′
,⇓S(t2(a, ū)) ∩ Lq2

T 
= ∅
(IH)⇔ (exists ψ, q1, q2) (q, f, ψ, ({q1}, {q2})) ∈ δd(T ),

IsSat(ϕ ∧ ψ(t0)),
(a, ū) ∈ [[Look(ϕ ∧ ψ(t0), P̄, q1, t1)]],
⇓S(t2(a, ū)) ∩ Lq2

T 
= ∅
(Eq (3))⇔ (exists ψ, q1, q2) (q, f, ψ, ({q1}, {q2})) ∈ δd(T ),

IsSat(ϕ ∧ ψ(t0)),

a ∈ [[ϕ]] ∩ [[ψ(t0)]], ū ∈ LP̄,

⇓S(t1(a, ū)) ∩ Lq1
T 
= ∅,⇓S(t2(a, ū)) ∩ Lq2

T 
= ∅
(Def 2)⇔ a ∈ [[ϕ]], ū ∈ LP̄,

⇓S( f [t0(a)](t1(a, ū), t2(a, ū))) ∩ Lq
T 
= ∅

⇔ a ∈ [[ϕ]], ū ∈ LP̄,⇓S(t(a, ū)) ∩ Lq
T 
= ∅

(Eq (3))⇔ (a, ū) ∈ [[Look(ϕ, P̄, q, t)]]

Equation (4) follows by the induction principle. Observe that, so far, no assumptions
on S or T were needed.

A triple (ϕ, P̄, t) of valid arguments of Reduce denotes the function ∂ (ϕ,P̄,t) such that,
for all a ∈ σ and ui ∈ T σ

� ,

∂ (ϕ,P̄,t)(a, ū) def=
{

⇓T (t(a, ū)), if (a, ū) ∈ [[(ϕ, P̄)]];

∅, otherwise.
(5)

Next, we prove (6) under the assumption that S is single-valued or T is linear. For all
a ∈ σ , ui ∈ T σ

� , and v ∈ T σ
� ,

(∃α) v ∈ ∂α(a, ū), Reduce(ϕ, P̄, t) returns α
⇔ v ∈ ∂ (ϕ,P̄,t)(a, ū). (6)

The proof is by induction over t with respect to the following term order: u ≺ t if either
u is a proper subterm of t or if the largest State subterm has strictly smaller height in
u than in t.

The base case is t = q̃( p̃(yi)) where q ∈ QT , p ∈ QS, and (6) follows because
Reduce(ϕ, P̄, q̃( p̃(yi))) returns (ϕ, P̄, p̃ · q(yi)) and λy · p̃.q(y) denotes, by definition,
the composition λy · q̃( p̃(y)).
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We use the extended case (7) of Definition 8 that allows states of S to occur in t̄. This
extension is justified by Lemma 4.4. For q ∈ QT :

⇓T (̃q( f [a](t̄))) def=⋃
{⇓T (u(a, t̄)) | (q, f, ϕ, 
̄, u)∈T , a∈[[ϕ]],

�( f )∧
i=1

⇓S(ti) ∩ L
i
T 
= ∅}.

(7)

Observe that when ti does not contain any states of S then ⇓S(ti) = {ti} and thus the
condition ⇓S(ti)∩L
i

T 
= ∅ simplifies to the condition ti ∈ L
i
T used in the original version

of Definition 8.
There are two induction cases. The first induction case is t = q̃( f [t0](t̄)) where q ∈ QT

and f ∈ �. Let t′ = f [t0](t̄). For all a ∈ σ , ui ∈ T σ
� , and v ∈ T σ

� ,

(∃α) v ∈ ∂α(a, ū), Reduce(ϕ, P̄, q̃(t′)) returns α

Def Reduce⇔ (∃τ, u, γ, 
̄) τ = q
f,γ,
̄−−→ u ∈ T

(∃ψ, R̄) Look(ϕ, P̄, qτ , t′) returns (ψ, R̄)
(∃β) Reduce(ψ, R̄, u(t0, t̄)) returns β

v ∈ ∂β(a, ū)
IH⇔ (∃τ, u, γ, 
̄) τ = q

f,γ,
̄−−→ u ∈ T

(∃ψ, R̄) Look(ϕ, P̄, qτ , t′) returns (ψ, R̄)
v ∈ ∂ (ψ,R̄,u(t0,t̄))(a, ū)

Eq (5)⇔ (∃τ, u, γ, 
̄) τ = q
f,γ,
̄−−→ u ∈ T

(∃ψ, R̄) Look(ϕ, P̄, qτ , t′) returns (ψ, R̄)
v ∈ ⇓T (u(t0(a), t̄(a, ū))), (a, ū) ∈ [[(ψ, R̄)]]

Eq (4)⇔ (∃τ, u, γ, 
̄) τ = q
f,γ,
̄−−→ u ∈ T

(a, ū) ∈ [[Look(ϕ, P̄, qτ , t′)]]
v ∈ ⇓T (u(t0(a), t̄(a, ū)))

Eq (3)⇔ (∃τ, u, γ, 
̄) τ = q
f,γ,
̄−−→ u ∈ T

a ∈ [[ϕ]], ū ∈ LP̄, ⇓S(t′(a, ū)) ∩ Lqτ

T 
= ∅
v ∈ ⇓T (u(t0(a), t̄(a, ū)))

Def qτ⇔ a ∈ [[ϕ]], ū ∈ LP̄

(∃u, γ, 
̄) q
f,γ,
̄−−→ u ∈ T

t0(a) ∈ [[γ ]],
�( f )∧
i=1

⇓S(ti(a, ū)) ∩ L
i
T 
= ∅

v ∈ ⇓T (u(t0(a), t̄(a, ū)))
Eq (7)⇔ a ∈ [[ϕ]], ū ∈ LP̄, v ∈ ⇓T (t(a, ū))
Def ∂⇔ v ∈ ∂ (ϕ,P̄,t)(a, ū).
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The second induction case is t = f [t0](t̄). Assume �( f ) = 2. Generalization to arbitrary
ranks is straightforward by repeating the next IH steps �( f ) times. For all a ∈ σ ,
ui ∈ T σ

� , and v ∈ T σ
� ,

(∃α) v ∈ ∂α(a, ū), Reduce(ϕ, P̄, f [t0](t1, t2)) returns α

Def Reduce⇔ (∃ ϕ′, P̄ ′, v1, ϕ
′′, P̄ ′′, v2)

Reduce(ϕ, P̄, t1) returns (ϕ′, P̄ ′, v1)
Reduce(ϕ′, P̄ ′, t2) returns (ϕ′′, P̄ ′′, v2)
v ∈ ∂ (ϕ′′,P̄ ′′, f [t0](v1,v2))(a, ū)

Def ∂⇔ (∃ ϕ′, P̄ ′, w1, ϕ
′′, P̄ ′′, w2)

Reduce(ϕ, P̄, t1) returns (ϕ′, P̄ ′, w1)
Reduce(ϕ′, P̄ ′, t2) returns (ϕ′′, P̄ ′′, w2)
v ∈ ⇓T ( f [t0(a)](w1(a, ū), w2(a, ū))),

a ∈ [[ϕ′′]], ū ∈ LP̄ ′′

Def ⇓T⇔ (∃ ϕ′, P̄ ′, w1, ϕ
′′, P̄ ′′, w2)

Reduce(ϕ, P̄, t1) returns (ϕ′, P̄ ′, w1)
Reduce(ϕ′, P̄ ′, t2) returns (ϕ′′, P̄ ′′, w2)
(∃ v1, v2)v = f [t0(a)](v1, v2)
v1 ∈ ⇓T (w1(a, ū)), v2 ∈ ⇓T (w2(a, ū))

a ∈ [[ϕ′′]], ū ∈ LP̄ ′′

IH⇔ (∃ ϕ′, P̄ ′, w1)
Reduce(ϕ, P̄, t1) returns (ϕ′, P̄ ′, w1)
(∃ v1, v2)v = f [t0(a)](v1, v2)
v1 ∈ ⇓T (w1(a, ū))
v2 ∈ ∂ (ϕ′,P̄ ′,t2)(a, ū)

Def ∂⇔ (∃ ϕ′, P̄ ′, w1)
Reduce(ϕ, P̄, t1) returns (ϕ′, P̄ ′, w1)
(∃ v1, v2)v = f [t0(a)](v1, v2)
v1 ∈ ⇓T (w1(a, ū))

a ∈ [[ϕ′]], ū ∈ LP̄ ′
, v2 ∈ ⇓T (t2(a, ū))

IH⇔ (∃ v1, v2)v = f [t0(a)](v1, v2)
v1 ∈ ∂ (ϕ,P̄,t1)(a, ū)
v2 ∈ ⇓T (t2(a, ū))

Def ∂⇔ (∃ v1, v2)v = f [t0(a)](v1, v2)

a ∈ [[ϕ]], ū ∈ LP̄, v1 ∈ ⇓T (t1(a, ū))
v2 ∈ ⇓T (t2(a, ū))

Def ⇓T⇔ a ∈ [[ϕ]], ū ∈ LP̄

v ∈ ⇓T ( f [t0(a)](t1(a, ū), t2(a, ū)))
Def ∂⇔ v ∈ ∂ (ϕ,P̄, f [t0](t1,t2))

Equation (6) follows by the induction principle.
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Finally, we prove Tp.q
S◦T = Tp

S◦Tq
t . Let p ∈ QS, q ∈ QT , and f [a](ū), w ∈ T σ

� be fixed.

w ∈ Tp.q
S◦T ( f [a](ū))

Def Compose⇔ (∃ ϕ, 
̄, t) (p, f, ϕ, 
̄, t) ∈ S

(∃ α)Reduce(ϕ, ∅̄, q̃(t)) returns α

w ∈ ∂α(a, ū), ū ∈ L
̄
S

Eq (6)⇔ (∃ ϕ, 
̄, t) (p, f, ϕ, 
̄, t) ∈ S

w ∈ ∂ (ϕ,∅̄,̃q(t))(a, ū), ū ∈ L
̄
S

Def ∂⇔ (∃ ϕ, 
̄, t) (p, f, ϕ, 
̄, t) ∈ S

a ∈ [[ϕ]], ū ∈ L∅̄, w ∈ ⇓T (̃q(t(a, ū))), ū ∈ L
̄
S

Def Tq
t⇔ (∃ ϕ, 
̄, t) (p, f, ϕ, 
̄, t) ∈ S

a ∈ [[ϕ]], ū ∈ L
̄
S, w ∈ Tq

t (t(a, ū))
(�)⇔ (∃ ϕ, 
̄, t) (p, f, ϕ, 
̄, t) ∈ S

a ∈ [[ϕ]], ū ∈ L
̄
S, w ∈ Tq

t (⇓S(t(a, ū)))
Def ⇓S⇔ w ∈ Tq

t (⇓S( p̃( f [a](ū))))
Def Tp

S⇔ w ∈ Tq
t (Tp

S( f [a](ū))).

Step (�) uses Lemma 4.4.2. It holds only when S is single-valued or T is linear. Other-
wise, only “⇐” holds.

5. EVALUATION

FAST can be used in multiple different applications. We first consider HTML input san-
itization for security. Then we show how Augmented Reality (AR) applications can be
checked for conflicts. Next, we show how FAST can perform deforestation and verifica-
tion for functional programs. Finally, we sketch how CSS analysis can be captured in
FAST.

5.1. HTML Sanitization

A central concern for secure web application is untrusted user inputs. These lead to
cross-site scripting (XSS) attacks, which, in its simplest form, is echoing untrusted
input verbatim back to the browser. Consider bulletin boards that want to allow par-
tial markup such as <b> and <i> tags or HTML email messages, where the email
provider wants rich email content with formatting and images but wants to prevent
active content such as JavaScript from propagating through. In these cases, a tech-
nique called sanitization is used to allow rich markup, while removing active (exe-
cutable) content. However, proper sanitization is far from trivial: unfortunately, for
both of these preceding scenarios, there have been high-profile vulnerabilities stem-
ming from careless sanitization of specially crafted HTML input leading to the cre-
ation of the infamous Samy worm for MySpace (http://namb.la/popular/) and the
Yamanner worm for the Yahoo Mail system. In fact, MySpace has repeatedly failed to
properly sanitize their HTML inputs, leading to the Month of MySpace Bugs initiative
(http://momby.livejournal.com/586.html).

This has led to the emergence of a range of libraries attempting to do
HTML sanitization, including PHP Input Filter, HTML_Safe, kses, htmLawed, Safe
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HTML Checker, and HTML Purifier. Among these, the last one, HTML Purifier
(http://htmlpurifier.org), is believed to be most robust, so we choose it as a com-
parison point for our experiments. Note that HTML Purifier is a tree-based rewriter
written in PHP, which uses the HTMLTidy library to parse the input.

We show how FAST is expressive enough to model HTML sanitizers, and we argue
that writing such programs is easier with FAST than with current tools. Our version of
an HTML sanitizer written in FAST and automatically translated by the FAST compiler
into C# is partially described in Section 2. Although we cannot argue for the correctness
of our implementation (except for the basic analysis shown in Section 2), sanitizers are
much simpler to write in FAST thanks to composition. In all the libraries mentioned
previously HTML sanitization is implemented as a monolithic function in order to
achieve reasonable performance. In the case of FAST each sanitization routine can be
written as a single function and all such routines can be then composed preserving the
property of traversing the input HTML only once.

Evaluation: To compare different sanitization strategies in terms of performance, we
chose 10 Web sites and picked an HTML page from each content, ranging from 20KB
(Bing) to 409KB in size (Facebook). For speed, the FAST-based sanitizer is comparable
to HTML Purify. In terms of maintainability, FAST wins on two counts. First, unlike
sanitizers written in PHP, FAST programs can be analyzed statically. Second, our san-
itizer is only 200 lines of FAST code instead of 10,000 lines of PHP. While these are
different languages, we argue that our approach is more maintainable because FAST

captures the high-level semantics of HTML sanitization, as well as being fewer lines
of code to understand. We manually spot-checked the outputs to determine that both
produce reasonable sanitizations.

5.2. Conflicting AR Applications

In AR the view of the physical world is enriched with computer-generated information.
For example, applications on the Layar AR platform provide up-to-date information
such as data about crime incidents near the user’s location, information about historical
places and landmarks, real estate, and other points of interest.

We call a tagger an AR application that labels elements of a given set with a piece
of information based on the properties of such elements. As an example, consider a
tagger that assigns to every city a set of tags representing the monuments in such city.
A large class of shipping mobile phone AR applications are taggers, including Layar,
Nokia City Lens, Nokia Job Lens, and Junaio. We assume that the physical world is
represented as a list of elements, and each element is associated with a list of tags
(i.e., a tree). Users should be warned if not prevented from installing applications that
conflict with others they have already installed. We say that two taggers conflict if they
both tag the same node of some input tree. In order to detect conflicts we perform the
following four-step check for each pair of taggers 〈p1, p2〉:

composition. We compute p, composition of p1 and p2.
input restriction. We compute p′, a restriction of p that is only defined on trees where

each node contains no tags.
output restriction. We compute p′′, a restriction of p′ that only outputs trees in which

some node contains two tags.
check. We check if p′′ is the empty transducer: if it is not the case, p1 and p2 conflict

on every input accepted by p′′.

Evaluation: Figure 6 shows the timing results for conflict analysis. To collect this
data, we randomly generated 100 taggers in FAST and checked whether they conflicted
with each other. Each element in the input of a tagger contained a name of type string,
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Fig. 6. Augmented reality: running times for operations on transducers. The x axis represents time intervals
in ms. The y axis shows how many cases run in a time belonging to an interval. For example, about 1,600
compositions were completed between 8 and 16 ms.

two attributes of type real, and an attribute of type int. In our encoding the left child
of each element was the list of tags, while the right child was the next element. Each
tagger we generated conforms to the following properties: (1) it is nonempty; (2) it tags
on average three nodes; and (3) it tags each node at most once.

The sizes of our taggers varied from 1 to 95 states. The language we used for the input
restriction has three states, and the one for the output five states. We analyzed 4,950
possible conflicts and 222 will be actual conflicts (i.e., FAST provided an example tree
on which the two taggers tagged the same node). The three plots show the time distri-
bution for the steps of (a) composition, (b) input restriction, and (c) output restriction,
respectively.

All the compositions are computed in less than 250ms, and the average time is 15ms.
All the input restrictions are computed in less than 150ms. The average time is 3.5ms.
All the output restrictions are computed in less than 33,000ms. The average time
is 175ms. The output restriction takes longer to compute in some cases, due to the
following two factors: (1) the input sizes are always bigger: the size of the composed
transducers after the input restriction (p′ in the list before) vary from 5 to 300 states
and 10 to 4,000 rules. This causes the restricted output to have up to 5,000 states
and 100,000 rules; and (2) since the conditions in the example are randomly generated,
some of them may be complex causing the SMT solver to slow down the computation.
The 33,000ms example contains nonlinear (cubic) constraints over reals. The average
time of 193ms per pairwise conflict check is quite acceptable: indeed, adding a new app
to a store already containing 10,000 apps will incur an average checking overhead of
about 35min.
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Fig. 7. Deforestation advantage for a list of 4,096 integers.

5.3. Deforestation

Next, we explore the idea of deforestation. First introduced by Wadler in 1988 [Wadler
1988], deforestation aims at eliminating intermediate computation trees when eval-
uating functional programs. For example, to compute the sum of the squares
of the integers between 1 and n, the following small program might be used:
sum (map square (upto 1 n)). Intermediate lists created as a result of evaluation
are a source of inefficiency. However, it has been observed that transducer composition
can be used to eliminate intermediate results. This can be done as long as individual
functions are representable as transducers. Unfortunately [Wadler 1988] only consid-
ers transformations over finite alphabets. We analyzed the performance gain obtained
by deforestation in FAST.

Evaluation: We considered the function map_caesar from Figure 8 that replaces each
value x of an integer list with (x + 5)%26. We composed the function map_caesar with
itself several times to see how the performance changed when using FAST. Let us call
mapn the composition of map_caesar with itself n times. Unlike in Wadler [1988], we
do not represent numbers using their unary encoding. We run the experiments on
lists containing randomly generated elements and we consider up to 512 composed
functions. Figure 7 shows the running time of FAST with and without deforestation
for a list of 4,096 integers used as the input. The running time of the version that
uses transducer composition is almost unchanged, even for 512 compositions, while
the running time of the naively composed functions degrades linearly in the number
of composed functions. This is due to the fact that the composed version results in a
single function that processes the input list in a single left-to-right pass, while the
naive composition causes the input list to be read multiple times.

5.4. Analysis of Functional Programs

FAST can also be used to perform static analysis of simple functional programs over
lists and trees. Consider again the functions from Figure 8. As we described in the
previous experiment the function map_caesar replaces each value x of an integer list
with (x + 5) mod 26. The function filter_ev removes all the odd elements from a list.

One might wonder what happens when such functions are composed. Consider the
case in which we execute the map followed by the filter, followed by the map, and
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Fig. 8. Analysis of functional programs in FAST. The final assertion shows that comp2 never outputs a
nonempty list. Example available at http://rise4fun.com/Fast/Jv.

again by the filter. This transformation is equivalent to deleting all the elements in
the list! This property can be statically checked in FAST. We first compute comp2 as
the composition described previously. As shown in Figure 8, the language of nonempty
lists can be expressed using the construct not_emp_list. Finally, we can use the output
restriction to restrict comp2 to only output nonempty lists and show that such function
is empty. In this example the whole analysis can be done in less than 10ms.

5.5. CSS Analysis

Cascading Style-Sheets (CSS) is a language that allows one to stylize and format HTML
documents. A CSS program is a sequence of CSS rules, where each rule contains a
selector and an assignment. The selector decides which nodes are affected by the rule
and the assignment is responsible for updating the selected nodes. The following is
a typical CSS rule: div p {word-spacing:30px;}. In this case div p is the selector,
while word-spacing:30px is the assignment. This rule sets the attribute word-spacing
to 30px for every p node inside a div node. We call C(H) be the updated HTML resulting
from applying a CSS program C to an HTML document H. In Geneves et al. [2012]
CSS programs are analyzed using tree logic. For example, one can check whether
given a CSS program C, there does not exist an HTML document H such that C(H)
contains a node n for which the attributes color and background-color both have value
black. This property ensures that black text is never written on a black background,
causing the text not to be readable. Ideally, one would want to check that color and
background-color never have the same value, but, since tree logic explicitly models the
alphabet, the corresponding formula would be too large. By modeling CSS programs as
symbolic tree transducers, we can overcome this limitation. This analysis relies on the
alphabet being symbolic, and we plan on extending FAST with primitives for simplifying
CSS modeling.

6. A COMPARISON WITH CLASSIC TREE TRANSDUCERS

As we mentioned in the previous section, the HTML sanitization and CSS analysis
problems could, in principle, be expressed using existing classic models and do not
require symbolic alphabets. In both of these domains the alphabet is finite and, for
example, the sanitizer in Figure 2 can be represented by classic finite state transducers
with regular look-ahead. In the next paragraphs we show the benefit of the symbolic
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representation of the alphabet and argue that the use of classic transducers does not
scale in this case.

The HTML sanitization example illustrates some core differences between the sym-
bolic and the classic case. In some respect, the situation is analogous to going from SAT
to SMT solving [de Moura and Bjørner 2011], where many of the core propositional
techniques remain similar but where a theory specific component adds additional suc-
cinctness and expressiveness. Consider our encoding of HTML documents presented in
Figure 3. In our representation each string value is modeled as a list of characters, and
this means that each possible character should belong to the input alphabet. The input
alphabet � therefore needs to include the UTF16 representation of Unicode characters,
because UTF16 is used as the standard runtime representation of characters and is
the basic building block of strings. Thus, � has at least 216 elements, for example, as
unary function symbols fc for the characters c. If we want to support full Unicode, for
example, including emoticons [The Unicode Consortium], we need to add additional
rules that ensure that consecutive characters . . . ( fc( fd(. . .))) where c and d are surro-
gates are indeed valid as surrogate pairs. This adds yet another layer of complexity
and there are 220 valid surrogate pairs. In contrast, at the level of strings, that are
defined as lists of 16-bit bit vectors, such checks are straightforward (given a solver
that supports lists and bit-vector arithmetic; for example, Z3 [de Moura and Bjørner
2008]), and involve fairly simple arithmetic operations.

We need to add look-ahead automata to all the rules so that the tag subtree does
not include other symbols besides the character symbols. Such an automaton needs 216

transitions. The where condition tag = "script" can be represented by a look-ahead
automaton, say A, with six transitions. The constraint tag 
= "script" can be repre-
sented by the complement Ac of A. Observe that complementation of classic automata
over large alphabets is expensive: while A needs six rules, one per character in the
string "script", Ac needs 6 ∗ (216 − 1) rules. The other string constraints are handled
similarly. Besides the additional look-ahead tests, transformation rules remain the
same, where tag is treated as the first subtree. Observe that, a further blowup would
occur if we wanted to apply transformations (other than the identity mapping, such
as HtmlEncoding) to tag, in which case we would need explicit rules for all of the 216

symbols.
The bottom line is that tags are independent of the rest of the tree structure and the

two should, if possible, not be mixed. Similar arguments already hold for symbolic finite
(word) transducers as a special case of symbolic tree transducers, where a symbolic
representation may avoid an exponential blow-up compared to an equivalent classic
transducer, as demonstrated by the symbolic word transducer implementing UTF8
encoding in D’Antoni and Veanes [2013b]. The same argument holds for the domain of
CSS analysis.

7. RELATED WORK

Tree transducers. Tree transducers have been long studied; surveys and books are
available on the topic [Fülöp and Vogler 1998; Comon et al. 2007; Raoult 1992]. The first
models were top-down and bottom-up tree transducers [Engelfriet 1975; Baker 1979],
later extended to top-down transducers with regular look-ahead in order to achieve clo-
sure under composition [Engelfriet 1977; Fülöp and Vágvölgyi 1989; Engelfriet 1980].
Extended top-down tree transducers [Maletti et al. 2009] (XTOP) were introduced in
the context of program inversion and allow rules to read more than one node at a time,
as long as such nodes are adjacent. When adding look-ahead such a model is equiva-
lent to top-down tree transducers with regular look-ahead. More complex models, such
as macro tree transducers [Engelfriet and Vogler 1985], and streaming tree transduc-
ers [Alur and D’Antoni 2012] have been introduced to improve the expressiveness at
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the cost of higher complexity. Due to this reason we do not consider extending them in
this article.

Symbolic transducers. Symbolic finite transducers (SFTs) over lists, together with
a front-end language BEK, were originally introduced in Hooimeijer et al. [2011] with a
focus on security analysis of string sanitizers. The main SFT algorithms, in particular
an algorithm for deciding equivalence of SFTs modulo a decidable background theory,
are studied in Veanes et al. [2012]. Variants of SFTs in which multiple input symbols
can be read by a single transition are studied in D’Antoni and Veanes [2013a] and
in Botinčan and Babić [2013]. Symbolic tree transducers are originally introduced
in Veanes and Bjørner [2012], where it is wrongly claimed that STTs are closed under
composition by referring to a generalization of a proof of the classic case in Fülöp and
Vogler [1998] that is only stated for total deterministic finite tree transducers. In Fülöp
and Vogler [2014] this error is discovered and other properties of STTs are investigated.
The main result of Veanes and Bjørner [2012] is an algorithm for checking equivalence
of single-valued linear STTs. For classic transducers, equivalence has been shown to be
decidable for deterministic or finite-valued tree transducers [Seidl 1994a], streaming
tree transducers [Alur and D’Antoni 2012], and MSO tree transformations [Engelfriet
and Maneth 2006]. We are currently investigating the problem of checking equivalence
of single-valued STTRs.

DSL for tree manipulation. Domain specific languages for tree transformation have
been studied in several different contexts. VATA [Lengal et al. 2012] is a tree automata
library for analyzing tree languages over large alphabets. In VATA transitions are rep-
resented symbolically using BDDs; however, the library does not support transducers
and it is limited to nondeterministic automata over finite (although large) alphabets.
TTT [Purtee and Schubert 2012] and Tiburon [May and Knight 2008], are transducer-
based languages used in natural language processing. TTT allows complex forms of
pattern matching, but does not enable any form of analysis. Tiburon supports prob-
abilistic transitions and several weighted tree transducer algorithms. Although they
support weighted transitions, both the languages are limited to finite input and output
alphabets. ASF+SDF [van den Brand et al. 2002] is a term-rewriting language for ma-
nipulating parsing trees. ASF+SDF is simple and efficient, but does not support any
analysis. In the context of XML processing numerous languages have been proposed for
querying (XPath, XQuery [Walmsley 2007]), stream processing (STX [Becker 2003]),
and manipulating (XSLT, XDuce [Hosoya and Pierce 2003]) XML trees. While being
very expressive, these languages support very limited forms of analysis. Emptiness
has been shown decidable for restricted fragments of XPath [Bojańczyk et al. 2006].
XDuce [Hosoya and Pierce 2003] allows one to define basic XML transformations, and
supports a tree automata based type checking that is limited to finite alphabets. We
plan to extend FAST to better handle XML processing and to identify a fragment of
XPath expressible in FAST. However, to the best of our knowledge, FAST is the first lan-
guage for tree manipulations that supports infinite input and output alphabets while
preserving decidable analysis. Figure 9 summarizes the relations between FAST and
the other domain-specific languages for tree transformations.

Applications. The connection between tree transducers and deforestation was first
investigated in Wadler [1988], and then further investigated in Kühnemann [1999].
In this setting, deforestation is done via Macro Tree Transducers (MTTs) [Engelfriet
and Vogler 1985]. While being more expressive than Top-Down Transducers with reg-
ular look-ahead, MTTs only support finite alphabets and their composition algorithm
has very high complexity. We are not aware of an actual implementation of the tech-
niques in Kühnemann [1999]. Many models of tree transducers have been introduced to
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Fig. 9. Summary of main domain specific languages for tree-manipulating programs and their properties;
σ indicates whether the language supports finite (ff) or infinite (∞) alphabets.

analyze and execute XML transformations. Most notably, K-pebble transducers [Milo
et al. 2000] enjoy decidable type checking and can capture fairly complex XSLT and
XML transformations. Macro forest transducer [Perst and Seidl 2004] extend MTT to
operate over unranked trees and therefore naturally capture XML transformations. Re-
cently, this model has been used to efficiently execute XQuery transformations [Hakuta
et al. 2014]. The models we just discussed only operate over finite alphabets. Many mod-
els of automata and transducers have been applied to verifying functional programs.
The equivalence problems has been shown to be decidable for some fragments of ML
using Class Memory Automata [Cotton-Barratt et al. 2015]. This model allows values
over infinite alphabets to be compared using equality, but does not support predicates
arbitrary label theories. This restriction is common in the so-called data languages
and makes other models operating in this setting orthogonal to symbolic automata and
transducers. Higher-Order Multiparameter Tree Transducers (HMTTs) [Kobayashi
et al. 2010] are used for type checking higher-order functional programs. HMTTs en-
able sound but incomplete analysis of programs which takes multiple trees as input,
but only support finite alphabets. Extending our theory to multiple input trees and
higher-order functions is an open research direction.

Open problems. Several complexity related questions for STAs and STTRs are open
and depend on the complexity of the label theory, but some lower bounds can be estab-
lished using known results for finite tree automata and transducers. For example, an
STA may be exponentially more succinct than the equivalent normalized STA because
one can directly express the intersection nonemptiness problem of a set of normal-
ized STAs as the emptiness of a single unnormalized STA. In the classic case, the
nonemptiness problem of tree automata is P-CO, while the intersection nonemptiness
problem is EXPTIME-CO [Comon et al. 2007, Theorem 1.7.5]. Recently, new techniques
based on antichains have been proposed to check universality and inclusion for nonde-
terministic tree automata [Bouajjani et al. 2008]. Whether such techniques translate
to our setting is an open research direction. Concrete open problems are decidability of
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single-valuedness of STTRs, equivalence of single-valued STTRs, and finite-valuedness
of STTRs. Classically, these problems are decidable, but some proofs are mathemat-
ically quite challenging [Seidl 1994a]. Novel algorithms for minimizing and learning
symbolic automata over lists have been recently proposed in D’Antoni and Veanes
[2014] and Botinčan and Babić [2013]. Extending such results to STAs are also unex-
plored topics.

8. CONCLUSIONS

We introduce FAST, a new domain-specific language for tree manipulation based on
symbolic tree automata and symbolic tree transducers. To allow FAST to perform useful
program analysis, we design a novel algorithm for composing symbolic tree trans-
ducers with regular look-ahead and we prove its correctness. FAST strikes a delicate
balance between precise analysis and expressiveness, and we show how multiple ap-
plications benefit from this analysis. A running version of FAST can be accessed at
http://rise4fun.com/Fast/.
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